Name: \qquad Date: \qquad

1. The relationship between the distance d, in feet, required to stop a vehicle and s, the speed in miles per hour that the vehicle was traveling, is given by the equation

$$
d=\frac{0.0155 s^{2}}{f}
$$

where f represents the coefficient of friction between the tires and the road.

It took a car 205 feet to stop. What speed was the car traveling? Use $f=0.3$ and round your answer to the nearest mile per hour.
2. What are the solutions to the equation $x^{2}-6 x+5=-8$?
A. 2 and 3
B. $2 i$ and $3 i$
C. $3+2 \cdot 3$ and $3-2 \cdot 3$
D. $3+2 i$ and $3-2 i$
3. An object that is projected straight downward with initial velocity v feet per second travels a distance $s=v t+16 t^{2}$, where $t=$ time in seconds. If Ramón is standing on a balcony 84 feet above the ground and throws a penny straight down with an initial velocity of 10 feet per second, in how many seconds will it reach the ground?
A. 2 seconds
B. 3 seconds
C. 6 seconds
D. 8 seconds
4. How many times does the graph of $y=2 x^{2}-2 x+3$ intersect the x-axis?
A. none
B. one
C. two
D. three
5. Which of the following sentences is true about the graphs of $y=3(x-5)^{2}+1$ and $y=3(x+5)^{2}+1$?
A. Their vertices are maximums.
B. The graphs have the same shape with different vertices.
C. The graphs have different shapes with different vertices.
D. One graph has a vertex that is a maximum, while the other graph has a vertex that is a minimum.
6. What are the x-intercepts of the graph of $y=12 x^{2}-5 x-2$?
A. 1 and $-\frac{1}{6}$
B. -1 and $\frac{1}{6}$
C. $\frac{2}{3}$ and $-\frac{1}{4}$
D. $-\frac{2}{3}$ and $\frac{1}{4}$
7. Which is the graph of $y=-2(x-1)^{2}+1$?
A.

B.

C.

D.

8. Which ordered pair is the vertex of $f(x)=x^{2}+6 x+5$?
A. $(-3,-4)$
B. $(-2,-3)$
C. $(-1,0)$
D. $(0,-5)$
9. Which of the following functions of x has the apparent range of $\{y: y \leq 0\}$?
A.

C.

B.

D.

10. A rectangle has a width of $4-x$ units and a length of x units. The area of the rectangle is represented by the function $A(x)=-x^{2}+4 x$, whose graph is shown.

What is the domain of $A(x)$ in this situation?
A. All real numbers
B. $-8<x<4$
C. $0 \leq x<4$
D. $0<x<4$
11. Look at the function that is graphed below.

What is the range of this function?
A. $-4 \leq y \leq 5$
B. $-3 \leq y \leq 3$
C. $-2 \leq y \leq 3$
D. $-4 \leq y \leq-1$
12. Look at the function that is graphed below.

What is the range of this function?
A. $-7 \leq y \leq 4$
B. $-6 \leq y \leq 8$
C. $-5 \leq y \leq 7$
D. $-2 \leq y \leq 5$
13. What is the range (all possible y-values) of the function $y=x^{2}-9$ if x is any real number?
A. all real numbers except 3
B. all real numbers except ${ }^{-} 3$
C. all real numbers greater than or equal to 9
D. all real numbers greater than or equal to ${ }^{-9}$
14. What is the domain of the function

$$
f(x)=2 x-3
$$

when the range is $\{-9,-3,1\}$?
A. $\{-21,-9,-1\}$
B. $\{-2,0,6\}$
C. $\{-8,-2,2\}$
D. $\{-3,0,2\}$
15. The equation of the function of x graphed below is $y=x^{2}$.

What is the range of the function?
A. \{real numbers $\}$
B. $\{y: y \geq 0\}$
C. $\{y: 0 \leq y \leq 3\}$
D. $\{y:-3 \leq y \leq 3\}$
16. Marina starts to solve the quadratic equation $3 x^{2}+5 x-2=0$.

$$
\begin{aligned}
3 x^{2}+5 x-2 & =0 \\
\frac{3}{3} x^{2}+\frac{5}{3} x & =\frac{2}{3} \\
x^{2}+\frac{5}{3} x & =\frac{2}{3}
\end{aligned}
$$

What value should Marina add to both sides of the equation to complete the square?
A. $\left(\frac{5}{6}\right)^{2}$
B. $\left(\frac{5}{3}\right)^{2}$
C. $-\frac{2}{3}$
D. $\frac{10}{3}$
17. Each of the functions shown represents the height (in feet) of a rocket t seconds after being fired.

$$
\begin{aligned}
& h(t)=-16(t-5)^{2}+576 \\
& h(t)=-16(t+1)(t-11)
\end{aligned}
$$

What is the initial height of the rocket above the ground?
A. 576 feet
B. 400 feet
C. 176 feet
D. 11 feet
18. Pedro throws a ball upward at a rate of 20 meters per second from an initial height of 2 meters. The height of the ball above the ground can be approximated by $h=-5 t^{2}+20 t+2$, where t represents the amount of time, in seconds, since the ball has been released.

What is the maximum height that the ball reaches?
A. 5 meters
B. 6 meters
C. 20 meters
D. 22 meters
19. The area of a square is determined using the formula $A=s^{2}$.

What is the length, in inches, of each side of this square?
A. 13 in.
B. $\quad 14 \mathrm{in}$.
C. 42.25 in .
D. 84.5 in .
20. Which equation is equivalent to $y=3 x^{2}+6 x+5$?
A. $y=3(x+3)^{2}-9$
B. $y=3(x+3)^{2}-4$
C. $y=3(x+1)^{2}+4$
D. $y=3(x+1)^{2}+2$
21. If $3 x^{2}=48$, what is the value of x ?
A. ± 4
B. ± 8
C. ± 16
D. 0 or 4
22. A ball is tossed into the air. The height of the ball as a function of time can be described by the equation $h=-16 t^{2}+72 t$. In this equation h is the height of the ball in feet and t is time in seconds.

After how many seconds will the ball hit the ground?
A. 4 seconds
B. 4.5 seconds
C. 9 seconds
D. 56 seconds
23. Which of the following quadratic equations is solved correctly?
A. $x^{2}-2 x-35=0$
B. $x^{2}+7 x+6=0$
$(x-7)(x+5)=0$ $x=7, x=-5$
$(x+1)(x+6)=0$ $x=1, x=6$
C. $x^{2}-9 x-18=0$
$(x-6)(x-3)=0$ $x=-6, x=-3$
D. $x^{2}-9 x+20=0$
$(x+4)(x+5)=0$
$x=-4, x=-5$
24. Which is the factored form of $3 a^{2}-24 a b+48 b^{2}$?
A. $(3 a-8 b)(a-6 b)$
B. $(3 a-16 b)(a-3 b)$
C. $3(a-4 b)(a-4 b)$
D. $3(a-8 b)(a-8 b)$
25. Which of the following shows $9 t^{2}+12 t+4$ factored completely?
A. $(3 t+2)^{2}$
B. $(3 t+4)(3 t+1)$
C. $(9 t+4)(t+1)$
D. $9 t^{2}+12+4 t$
26. What is the complete factorization of $32-8 z^{2}$?
A. $-8(2+z)(2-z)$
B. $8(2+z)(2-z)$
C. $-8(2+z)^{2}$
D. $8(2-z)^{2}$
27. If x^{2} is added to x, the sum is 42 . Which of the following could be the value of x ?
A. -7
B. -6
C. 14
D. 42
28. Carter is solving this equation by factoring.

$$
10 x^{2}-25 x+15=0
$$

Which expression could be one of his correct factors?
A. $x+3$
B. $x-3$
C. $2 x+3$
D. $2 x-3$
29. $25 x^{2}-40 x y+16 y^{2}$
A. $(5 x-4 y)^{2}$
B. $(5 x+10-4 y)^{2}$
C. $5\left(5 x-4 y^{2}\right)$
D. $5(4 x y)^{2}$
30. The Hypertech Company uses the formula

$$
C=-2 n^{2}+2 n+1500
$$

to calculate C, the cost per computer of producing n computers. What is the greatest number of computers the company can produce for a cost per computer of $\$ 1080$?
A. 10
B. 14
C. 15
D. 21
31. The area of a rectangular lot is represented by $8 b^{2}-22 b-21$. If the width of the lot is $4 b+3$, which expression represents the length?
A. $4 b+7$
B. $4 b-7$
C. $2 b+7$
D. $2 b-7$
1.
2.

Answer: D
3.

Answer: A
4.

Answer: A
5.

Answer: B
6.

Answer: C
7.

Answer: C
8.

Answer: A
9.

Answer:
B
10.

Answer: D
11.

Answer: B
12.

Answer: A
13.
14.

Answer: D
15.

Answer: B
16.

Answer: A
17.

Answer: C
18.

Answer: D
19.

Answer: A
20.

Answer: B
21.

Answer:
A
22.

Answer: B
23.

Answer: A
24.

Answer: C
25.

Answer: A
26.

Answer: B
27.

Answer: A
28.

Answer: D
29.

Answer: A
30.

Answer: C
31.

Answer: D

